Genetic testing (also called DNA-based tests) is among the newest and most sophisticated of techniques[1] used to test for genetic disorders which involves direct examination of the DNA molecule itself. Other genetic tests include biochemical tests for such gene products as enzymes and other proteins and for microscopic examination of stained or fluorescent chromosomes. Genetic tests are used for several reasons, including:
Genetic testing allows the genetic diagnosis of vulnerabilities to inherited diseases, and can also be used to determine a child's paternity (genetic father) or a person's ancestry. Normally, every person carries two copies of every gene (with the exception of genes related to sex-linked traits, which are only inherited from the mother by males), one inherited from their mother, one inherited from their father. The human genome is believed to contain around 20,000 - 25,000 genes. In addition to studying chromosomes to the level of individual genes, genetic testing in a broader sense includes biochemical tests for the possible presence of genetic diseases, or mutant forms of genes associated with increased risk of developing genetic disorders. Genetic testing identifies changes in chromosomes, genes, or proteins.[2] Most of the time, testing is used to find changes that are associated with inherited disorders. The results of a genetic test can confirm or rule out a suspected genetic condition or help determine a person's chance of developing or passing on a genetic disorder. Several hundred genetic tests are currently in use, and more are being developed.[3][4]
Since genetic testing may open up ethical or psychological problems, genetic testing is often accompanied by genetic counseling.
Contents |
Genetic testing is "the analysis of, chromosomes (DNA), proteins, and certain metabolites in order to detect heritable disease-related genotypes, mutations, phenotypes, or karyotypes for clinical purposes."[5] It can provide information about a person's genes and chromosomes throughout life. Available types of testing include:
Genetic testing is often done as part of a genetic consultation and as of mid-2008 there were more than 1,200 clinically applicable genetic tests available.[7] Once a person decides to proceed with genetic testing, a medical geneticist, genetic counselor, primary care doctor, or specialist can order the test after obtaining informed consent.
Genetic tests are performed on a sample of blood, hair, skin, amniotic fluid (the fluid that surrounds a fetus during pregnancy), or other tissue. For example, a medical procedure called a buccal smear uses a small brush or cotton swab to collect a sample of cells from the inside surface of the cheek. Alternatively, a small amount of saline mouthwash may be swished in the mouth to collect the cells. The sample is sent to a laboratory where technicians look for specific changes in chromosomes, DNA, or proteins, depending on the suspected disorder. The laboratory reports the test results in writing to a person's doctor or genetic counselor.
Routine newborn screening tests are done on a small blood sample obtained by pricking the baby's heel with a lancet.
The results of genetic tests are not always straightforward, which often makes them challenging to interpret and explain. When interpreting test results, healthcare professionals consider a person’s medical history, family history, and the type of genetic test that was done.
A positive test result means that the laboratory found a change in a particular gene, chromosome, or protein of interest. Depending on the purpose of the test, this result may confirm a diagnosis, indicate that a person is a carrier of a particular genetic mutation, identify an increased risk of developing a disease (such as cancer) in the future, or suggest a need for further testing. Because family members have some genetic material in common, a positive test result may also have implications for certain blood relatives of the person undergoing testing. It is important to note that a positive result of a predictive or presymptomatic genetic test usually cannot establish the exact risk of developing a disorder. Also, health professionals typically cannot use a positive test result to predict the course or severity of a condition.
A negative test result means that the laboratory did not find a dangerous copy of the gene, chromosome, or protein under consideration. This result can indicate that a person is not affected by a particular disorder, is not a carrier of a specific genetic mutation, or does not have an increased risk of developing a certain disease. It is possible, however, that the test missed a disease-causing genetic alteration because many tests cannot detect all genetic changes that can cause a particular disorder. Further testing may be required to confirm a negative result.
In some cases, a negative result might not give any useful information. This type of result is called uninformative, indeterminate, inconclusive, or ambiguous. Uninformative test results sometimes occur because everyone has common, natural variations in their DNA, called polymorphisms, that do not affect health. If a genetic test finds a change in DNA that has not been associated with a disorder in other people, it can be difficult to tell whether it is a natural polymorphism or a disease-causing mutation. An uninformative result cannot confirm or rule out a specific diagnosis, and it cannot indicate whether a person has an increased risk of developing a disorder. In some cases, testing other affected and unaffected family members can help clarify this type of result.
The physical risks associated with most genetic tests are very small, particularly for those tests that require only a blood sample or buccal smear (a procedure that samples cells from the inside surface of the cheek). The procedures used for prenatal testing carry a small but real risk of losing the pregnancy (miscarriage) because they require a sample of amniotic fluid or tissue from around the fetus.
Many of the risks associated with genetic testing involve the emotional, social, or financial consequences of the test results. People may feel angry, depressed, anxious, or guilty about their results. In some cases, genetic testing creates tension within a family because the results can reveal information about other family members in addition to the person who is tested. The possibility of genetic discrimination in employment or insurance is also a concern. Some individuals avoid genetic testing out of fear it will affect their ability to purchase insurance or find a job.[8] Health insurers do not currently require applicants for coverage to undergo genetic testing, and when insurers encounter genetic information, it is subject to the same confidentiality protections as any other sensitive health information.[9] In the United States, the use of genetic information is governed by the Genetic Information Nondiscrimination Act (GINA) (see discussion below in the section on government regulation).
Genetic testing can provide only limited information about an inherited condition. The test often can't determine if a person will show symptoms of a disorder, how severe the symptoms will be, or whether the disorder will progress over time. Another major limitation is the lack of treatment strategies for many genetic disorders once they are diagnosed.
A genetics professional can explain in detail the benefits, risks, and limitations of a particular test. It is important that any person who is considering genetic testing understand and weigh these factors before making a decision.
Direct-to-Consumer (DTC) genetic testing is a type of genetic test that is accessible directly to the consumer without having to go through a health care professional. Usually, to obtain a genetic test, health care professionals such as doctors acquire the permission of the patient and order the desired test. DTC genetic tests, however, allow consumers to bypass this process and order one themselves. There are a variety of DTC tests, ranging from testing for breast cancer alleles to mutations linked to cystic fibrosis. Benefits of DTC testing are the accessibility of tests to consumers, promotion of proactive healthcare and the privacy of genetic information. Possible additional risks of DTC testing are the lack of governmental regulation and the potential misinterpretation of genetic information.
DTC genetic testing has been controversial due to outspoken opposition within the scientific community. Critics of DTC testing argue against the risks involved, the unregulated advertising and marketing claims, and the overall lack of governmental oversight.[10]
DTC testing involves many of the same risks associated with any genetic test. One of the more obvious and dangerous of these is the possibility of severe misreading of test results. Without professional guidance, consumers can potentially misinterpret genetic information, causing them to be deluded about their personal health.
Some advertising for direct-to-consumer genetic testing has been criticized as conveying an exaggerated and inaccurate message about the connection between genetic information and disease risk, utilizing emotions as a selling factor. An advertisement for a BRCA-predictive genetic test for breast cancer stated: “There is no stronger antidote for fear than information.”[11]
Currently, the U.S. has no strong Federal regulation moderating the DTC market. Though there are several hundred tests available, only a handful are approved by the Food and Drug Administration (FDA); these are sold as at-home test kits, and are therefore considered "medical devices" over which the FDA may assert jurisdiction. Other types of DTC tests require customers to mail in DNA samples for testing; it is difficult for the FDA to exercise jurisdiction over these types of tests, because the actual testing is completed in the laboratories of providers. As of 2007, the FDA had not yet officially substantiated with scientific evidence the claimed accuracy of the majority of direct-to-consumer genetic tests.[12]
With regard to genetic testing and information in general, legislation in the United States called the Genetic Information Nondiscrimination Act prohibits group health plans and health insurers from denying coverage to a healthy individual or charging that person higher premiums based solely on a genetic predisposition to developing a disease in the future. The legislation also bars employers from using individuals’ genetic information when making hiring, firing, job placement, or promotion decisions.[13] The legislation, the first of its kind in the U.S.,[14] was passed by the United States Senate on April 24, 2008, on a vote of 95-0, and was signed into law by President George W. Bush on May 21, 2008.[15][16] It went into effect on November 21, 2009.
Some possible future ethical problems of genetic testing were considered in the science fiction film Gattaca, the novel Next, and the science fiction anime series "Gundam Seed". Also some films which include the topic of genetic testing include "The Island" and the "Resident Evil" series.
The introduction of new technologies and the global trend of modernization have transformed various cultural beliefs about cancer. A study in 2008 was conducted in Israel focusing on the perspectives of 51 Arab Israeli on the subject of cancer, specifically breast cancer screening. With the influence of development from Western cultures and the persistence to hold onto traditional customs, knowledge on the prevention and detection of breast cancer varied, with mixes of biomedical beliefs and traditional beliefs. According to the study however, when asked if they would undergo a breast screening process, almost every woman said they would decline the opportunity for either the fear of the breast screening causing cancer or the revelation of breast cancer would be seen as a punishment from God. In a culture where the mother is seen to be as the one responsible raising a child, a woman diagnosed with breast cancer who is to breast-feed her children was considered a bad mother as the women would refuse to breast feed their children after having been diagnosed. The women feared they would lose their roles in society, which is why there was so much unpopularity amongst the interviewed Arab Israeli women in relation to breast screening. [17]